Market potential of catenary hybrid electric trucks in different world regions

Till Gnann1,*, Martin Wietschel1,2, Tim Hettesheimer1, Philipp Kluschke1
1Fraunhofer Institute for Systems and Innovation Research ISI, Breslauer Str. 48, 76139 Karlsruhe
2Karlsruhe Institute of Technology, Institute for Industrial Production, Hertzstr. 16, 76187 Karlsruhe
*till.gnann@isi.fraunhofer.de

Summary
Catenary hybrid electric vehicles (CHV) are one solution for a decarbonization of heavy-duty transport. To this point, research focuses on Germany and Sweden while other regions with large amounts of trucks are neglected. In this paper, the economic market potential of CHV in Europe, the US, China and India are analyzed. We find high market shares for CHVs with diesel engine for large parts of the considered markets.

1 Research Questions
Global warming combined with an increase of road freight transport has risen attention for low-carbon transport solutions for heavy-duty vehicles. Overhead catenary hybrid electric vehicles (CHV) may be one solution for this issue. While there has been lots of published research on the German and Swedish market, the big international markets have been out of focus to this point. For this reason, we aim identifying economic market potentials for CHV in the EU and US as well as China and India in 2030.

2 Methodology
The market potential is determined in a comparison of the relevant total cost of ownership (TCO) of different drive train options. These are calculated by the TCO components that differ between drive trains, such as investment (I), fuel cost (consumption con_s multiplied with fuel price C_f) and cost for operations and maintenance $c_{O&M}$. The investment has to be annuitized (with interest rate i and investment horizon T) and divided by the vehicle kilometers travelled (VKT). In this paper, the cost elements are presented kilometer-specific since this is common for truck leasing rates.

$$ TCO = \frac{1}{VKT} \cdot I \cdot \frac{(1 + i)^T \cdot i}{(1 + i)^T - 1} + con_s \cdot C_f + c_{O&M} $$

Here, we focus on trucks with a gross vehicle weight of 40 tons and compare vehicles powered with Diesel, liquefied natural gas (LNG), hydrogen (fuel cell electric vehicles, FCEV) and electricity (pure battery electric vehicles (BEV) as well as CHV). Investments, energy consumption and cost for operations and maintenance are considered equal in all countries and given in Table 1. These assumptions are based on [1].
Table 1: Vehicle-specific parameters for different drive trains. Own assumptions based on [1].

The country-specific energy prices are taken from the New Policies Scenario in World Energy Outlook 2017 [2]. We increased energy prices to also contain the cost for compression for LNG as well as the cost for distribution infrastructure in 2030. Hydrogen is produced from electricity via electrolysis. The resulting energy prices are shown in Table 2.

<table>
<thead>
<tr>
<th>Indicator</th>
<th>Diesel</th>
<th>LNG</th>
<th>BEV200</th>
<th>FCEV</th>
<th>CHV</th>
<th>CHV100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Investment 2030 [€]</td>
<td>128,673</td>
<td>135,107</td>
<td>194,477</td>
<td>174,000</td>
<td>152,000</td>
<td>189,200</td>
</tr>
<tr>
<td>Consumption [kWh/km]</td>
<td>2.457</td>
<td>2.781</td>
<td>1.232</td>
<td>2.250</td>
<td>1.600</td>
<td>1.600</td>
</tr>
<tr>
<td>Cost for O&M [€/km]</td>
<td>.152</td>
<td>.143</td>
<td>.092</td>
<td>.132</td>
<td>.135</td>
<td>.107</td>
</tr>
</tbody>
</table>

Table 2: Energy prices in 2030. Own calculations based on [2]

A clearly differing factor between countries are annual mileages of vehicles. The authors of this paper were not able to find cross-sectional data for heavy-duty trucks in the four regions under observation. Hence, the distribution of annual driving distances from a German data set [3] is used and projected to the other regions based on the mean annual driving distance and the number of vehicles in the region in [4]. These distributions can be found in Figure 1 as percentage of vehicles and as absolute number of vehicles in stock, the country-specific mean annual mileages and HDV stock in 2030 are given in Table 3.

<table>
<thead>
<tr>
<th>Indicator</th>
<th>EU</th>
<th>US</th>
<th>CN</th>
<th>IN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy price [€/kWh]</td>
<td>.215</td>
<td>.119</td>
<td>.139</td>
<td>.149</td>
</tr>
<tr>
<td>Diesel</td>
<td>.130</td>
<td>.070</td>
<td>.150</td>
<td>.140</td>
</tr>
<tr>
<td>LNG</td>
<td>.156</td>
<td>.090</td>
<td>.078</td>
<td>.060</td>
</tr>
<tr>
<td>Electricity</td>
<td>.309</td>
<td>.181</td>
<td>.170</td>
<td>.155</td>
</tr>
</tbody>
</table>

Figure 1: Distribution of annual mileages in different world regions based on [2, 4]

Table 3: Mean annual mileages and HDV stock in 2030; Own assumptions based on [4]

<table>
<thead>
<tr>
<th>Indicator</th>
<th>EU</th>
<th>US</th>
<th>CN</th>
<th>IN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean annual mileage [km]</td>
<td>92,000</td>
<td>112,000</td>
<td>52,000</td>
<td>48,000</td>
</tr>
<tr>
<td>HDV stock 2030</td>
<td>3,400,000</td>
<td>3,700,000</td>
<td>6,900,000</td>
<td>2,300,000</td>
</tr>
</tbody>
</table>

3 Results

We show two sets of results. First, we look at different drive train options for average annual mileages to indicate the competing alternative drive train options. Second, we show the cost differences between CHV and diesel for different annual mileages and combine them with the annual mileage distributions from the previous section.
The TCO for different drive trains and region-specific mean annual mileages are shown in Figure 2. Here, capital, energy and O&M cost are distinguished for seven variants: diesel trucks, LNG trucks, BEVs with a range of 200 km, FCEV, CHV with diesel engine as second drive train with 100% and with 0% electric driving and CHV with a 100 km battery.

We find FCEV to have the highest cost in all countries while the other drive trains are all in a range of 0.3 €/km. In all world regions, CHV with 100% electric driving are cheapest option for the average annual mileage. The 0% electric CHV is always more costly, but the differences between all electric and non-electric differ a lot between regions (e.g. 0.28 €/km EU and 0.14 €/km in India). BEV200 and CHV100 are always cheaper than diesel vehicles, yet their range is limited would require high amounts of charging. LNG could be a cheaper near-term solution than diesel vehicles in EU and the US, but already in China and India, their TCO is higher.

![Figure 2: TCO comparison for different drive trains and regions for region specific mean annual mileages. All values shown in [€/km]. Own calculations for 2030.](image)

Average driving distances can help us to get a good first image, but driving distance distributions allow understanding more about the market size and market potentials. In Figure 3, we show the TCO differences between a CHV driving 50% electrically and a diesel vehicle in dependence of the annual driving distances. The TCO differences are shown in €/km for the four different regions.
We find the highest positive cost differences for low annual driving distances - here, diesel vehicles are cheaper than CHVs. From a certain distance on, CHVs are cheaper, the so-called break-even distance. These distances are at 30,000 to 40,000 km for EU and China and around 70,000 km for the US and India. In Figure 4, we compare these distances to the distribution of annual driving distances for Europe.

We indicate the break-even distance with a red line. One may clearly observe that the break-even distance in Europe is left of the driving distance peak, i.e. the majority of vehicles drives more than needed. These results are similar for the other regions. We find the highest relative market shares for Europe (~90%) and the lowest in India (~40%) while the absolute market shares are highest for China (cf. Figure 1).

We can summarize the two main findings of this paper as follows: (1) CHV with a diesel engine and 100% electric driving have the lowest cost in all regions for average annual driving distances. (2) Even with only 50% electric driving, CHV are cheaper in all observed regions in 2030 for the majority of vehicles.

Certainly, these results are subject to a number of assumptions taken from literature. For the presentation, we will also analyze the impact on results of a parameter variation (e.g. energy prices) in a sensitivity analysis.

Acknowledgments

This publication was written in the framework of the Profilregion Mobilitätssysteme Karlsruhe, which is funded by the Ministry of Economic Affairs, Labour and Housing in Baden-Württemberg and as a national High Performance Center by the Fraunhofer-Gesellschaft.
References

Authors

Dr. Till Gnann studied of industrial engineering at the Karlsruhe Institute of Technology (KIT) and at the Politecnico di Milano (Italy). Since April 2011, he works as a researcher at the Fraunhofer Institute for Systems and Innovation Research ISI. He finished his PhD at the Karlsruhe Institute of Technology (KIT) in July 2015 on “Market diffusion of plug-in electric vehicles and their charging infrastructure”. His current research focuses on alternative drive trains for road transport.

Prof. Dr. Martin Wietschel: Studies of Industrial Engineering and Management at the University of Karlsruhe. From 2002 to 2011 member of the Competence Center Energy Policy and Energy Systems at the Fraunhofer Institute for Systems and Innovation Research ISI, since January 2012 Deputy Head of the Competence Center Energy Technology and Energy Systems. Since 2007 Coordinator of the Business Unit Energy Economy. From 2005 to 2011 lecturer at the ETH Zurich and since 2008 adjunct professor at the University of Karlsruhe (now Karlsruhe Institute of Technology (KIT)).

Dr. Tim Hettesheimer studied General Engineering at the Technical University Kaiserslautern and at Karlsruhe Institute for Technology (KIT). From 2010 to 2015, he worked as a researcher at the Fraunhofer Institute for Systems and Innovation Research in the Competence Center Industrial and Service Innovations. Since May 2015 in the Competence Center Energy Technology and Energy Systems. He received his PhD from KIT in 2016.

Philipp Kluschke studied industrial engineering at the University of Kassel and the Technical University of Berlin (MSc) with a focus on electrical engineering and energy management. At the same time, he completed a Chamber of Industry and Commerce vocational training course as an electronics technician and studied abroad at the University of Queensland, Australia as well as doing diverse internships in Germany and abroad. He then spent 3 years primarily in the automotive industry working on the research and development of electrical powertrains. Since February 2018, researcher in the Competence Center Energy Technology and Energy Systems at Fraunhofer ISI.