Socioeconomic Analysis of Electric Roads

Dr. Martin G. H. Gustavsson
RISE, Research Institutes of Sweden

Dr. Askill Harkjerr Halse
Institute of Transport Economics, Norway

Electric Road Systems Conference 2019
Electric Road Systems (ERS): Power transfer during movement

- Long range for cars, buses and trucks – various applications
- Reduced need for batteries – less cost for vehicles
- Reduced need for charging stops – increased flexibility
- Direct use of electricity offers the most energy efficient way
Cost-benefit analysis of electrified roads

- The implementation of ERS will be associated with large investments
- Important to study the economic impact and benefits for the society
- Cost-benefit analysis of electrification of existing road
Net present value in a cost-benefit analysis

- How large are the gains in terms of cost savings compared with the cost of investing in new infrastructure and new vehicles?

- Taxes and fees do not constitute a net cost to society, only a transfer from private individuals or firms to the government.
User benefits

- Electric truck → lower transport cost
- If change is small, demand effect can be ignored
User benefits

- Electric truck → lower transport cost
- If change is small, demand effect can be ignored
Wider economic benefits

- User benefits also capture benefits in secondary markets (labour, product)
- If there are market imperfections in secondary market, transport improvements could give additional benefits
- Relevant if project leads to large transport time and/or cost savings, mostly not the case for ERS
Business model

- Transport cost savings must cover truck investment
- Depends on share of trip conducted on electrified road

Electrified road = 60%

= 30%
Spillover effects

• New road can make use of electric trucks on existing road profitable for more transports

• → Private profits and socio-economic benefits depend on existing ERS network
External costs

• Infrastructure damage, accidents, emissions, noise
• CO$_2$ emissions and local pollution lower with ERS
• Net present value for society could be positive even if the business model has negative profits
Needed data

- Road construction costs
- Cost for deployment of ERS infrastructure
- Maintenance cost
- Amount of traffic, electrical and conventional, distributed along the road network
- Distance-dependent driving costs
- Non-distance-dependent capital costs (investment and maintenance)
- Local emissions (and possibly noise) costs
- Costs of greenhouse gas emissions
Outlook: “Electric road system: a solution for the future?” from PIARC

- TRL Limited has used a CBA model developed in the UK
- “some types of ERS are financially viable if sufficient capital investment can be made, as long as the electricity mark-up and uptake is sufficient”
- ERS technologies that can be used by cars as well as heavy duty vehicles “are more likely to recoup the initial investment”
Outlook: “Trucking into a Greener Future” by Cambridge Econometrics

- Increase in GDP of 0.07% and in employment of around 120,000 jobs by year 2030 in zero-emission scenarios e.g. ERS
- The scenarios assume a high uptake of zero-emission vehicles
- Interesting findings, but does not constitute a conventional cost-benefit analysis
Acknowledgements

- Article to be presented at 32nd Electric Vehicle Symposium (EVS32) in Lyon, 19 – 22 May 2019
- Financial support from: